Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 100, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38217256

RESUMO

Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate (ODHP) was extracted in a previous study from the culture broth of soil isolate Alcaligenes faecalis MT332429 and showed a promising antimycotic activity. This study was aimed to formulate ODHP loaded ß-cyclodextrins (CD) nanosponge (NS) hydrogel (HG) to control skin fungal ailments since nanosponges augment the retention of tested agents in the skin. Box-Behnken design was used to produce the optimized NS formulation, where entrapment efficiency percent (EE%), polydispersity index (PDI), and particle size (PS) were assigned as dependent parameters, while the independent process parameters were polyvinyl alcohol % (w/v %), polymer-linker ratio, homogenization time, and speed. The carbopol 940 hydrogel was then created by incorporating the nanosponges. The hydrogel fit Higuchi's kinetic release model the best, according to in vitro drug release. Stability and photodegradation studies revealed that the NS-HG remained stable under tested conditions. The formulation also showed higher in vitro antifungal activity against Candida albicans compared to the control fluconazole. In vivo study showed that ODHP-NS-HG increased survival rates, wound contraction, and healing of wound gap and inhibited the inflammation process compared to the other control groups. The histopathological examinations and Masson's trichrome staining showed improved healing and higher records of collagen deposition. Moreover, the permeability of ODHP-NS-HG was higher through rats' skin by 1.5-folds compared to the control isoconazole 1%. Therefore, based on these results, NS-HG formulation is a potential carrier for enhanced and improved topical delivery of ODHP. Our study is a pioneering research on the development of a formulation for ODHP produced naturally from soil bacteria. KEY POINTS: • Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate was successfully formulated as a nanosponge hydrogel and statistically optimized. • The new formula exhibited in vitro good stability, drug release, and higher antifungal activity against C. albicans as compared to the fluconazole. • Ex vivo showed enhanced skin permeability, and in vivo analysis showed high antifungal activity as evidenced by measurement of various biochemical parameters and histopathological examination.


Assuntos
Alcaligenes faecalis , Butanos , Hidrogéis , Ratos , Animais , Antifúngicos/farmacologia , Fluconazol , Propionatos , Candida albicans , Solo , Tamanho da Partícula
2.
Microorganisms ; 11(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38137979

RESUMO

Fungal infections currently pose a real threat to human lives. In the current study, soil bacterial isolates were screened for the production of antifungal compounds to combat human fungal pathogens. Notably, the bacterial F1 isolate exhibited antimycotic action towards the Candida albicans ATCC 10231 and Aspergillus niger clinical isolates. By employing phenotypic and molecular techniques, we identified the F1 isolate as the Bacillus toyonensis isolate OQ071612. The purified extract showed stability within a pH range of 6-7 and at temperatures of up to 50 °C. It demonstrated potential antifungal activity in the presence of various surfactants, detergents, and enzymes. The purified extract was identified as 6-methoxy-1H-Indole-2-carboxylic acid using advanced spectroscopic techniques. To optimize the antifungal metabolite production, we utilized response surface methodology (RSM) with a face-centered central composite design, considering nutritional and environmental variables. The optimal conditions were as follows: starch (5 g/L), peptone (5 g/L), agitation rate of 150 rpm, pH 6, and 40 °C temperature. A confirmatory experiment validated the accuracy of the optimization process, resulting in an approximately 3.49-fold increase in production. This is the first documented report on the production and characterization of 6-methoxy-1H-Indole-2-carboxylic acid (MICA) antifungal metabolite from Bacillus toyonensis.

3.
Molecules ; 27(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011429

RESUMO

Resistance to antifungal agents represents a major clinical challenge, leading to high morbidity and mortality rates, especially in immunocompromised patients. In this study, we screened soil bacterial isolates for the capability of producing metabolites with antifungal activities via the cross-streak and agar cup-plate methods. One isolate, coded S6, showed observable antifungal activity against Candida (C.) albicans ATCC 10231 and Aspergillus (A.) niger clinical isolate. This strain was identified using a combined approach of phenotypic and molecular techniques as Lysinibacillus sp. MK212927. The purified metabolite displayed fungicidal activity, reserved its activity in a relatively wide range of temperatures (up to 60 °C) and pH values (6-7.8) and was stable in the presence of various enzymes and detergents. As compared to fluconazole, miconazole and Lamisil, the minimum inhibitory concentration of the metabolite that showed 90% inhibition of the growth (MIC90) was equivalent to that of Lamisil, half of miconazole and one fourth of fluconazole. Using different spectroscopic techniques such as FTIR, UV spectroscopy, 1D NMR and 2D NMR techniques, the purified metabolite was identified as terbinafine, an allylamine antifungal agent. It is deemed necessary to note that this is the first report of terbinafine production by Lysinibacillus sp. MK212927, a fast-growing microbial source, with relatively high yield and that is subject to potential optimization for industrial production capabilities.


Assuntos
Antifúngicos/farmacologia , Bacillaceae/química , Produtos Biológicos/farmacologia , Terbinafina/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Bacillaceae/classificação , Bacillaceae/isolamento & purificação , Bacillaceae/metabolismo , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Microbiologia do Solo , Análise Espectral , Terbinafina/química , Terbinafina/isolamento & purificação
4.
Appl Microbiol Biotechnol ; 104(24): 10755-10768, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33090249

RESUMO

In the current study, a soil bacterial isolate F2 expressed a significant antagonistic activity against Candida albicans ATCC 10231 and Aspergillus niger clinical isolate confirmed through cross streak, dual culture, and agar well diffusion methods. The isolate F2 was identified using phenotypic and molecular approaches as Alcaligenes (A.) faecalis MT332429. The identification and structural characterization of the antifungal compound was performed using advanced spectroscopic techniques including UV absorbance, 1H and 13C NMR and 2D NMR (COSY, HSQC, and HMBC) and was identified as octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate. Response surface methodology (RSM) using a central composite design was employed to optimize the nutritional and cultural variables affecting the antifungal metabolite yield. The optimum conditions were found to be temperature 30 °C, agitation 150 rpm, glucose 1 g/l, peptone 2 g/l, and pH 8. A confirmatory experiment was performed to assess the accuracy of the optimization procedure, where an increase in the antifungal metabolite production by about 2.48-fold was obtained. To the best of our knowledge, this is the first report of octadecyl 3-(3, 5-di-tert-butyl-4-hydroxyphenyl) propanoate recovered from the culture broth of A. faecalis MT332429 with a promising antifungal activity along with its optimized production through RSM. KEY POINTS: • A novel soil bacterial isolate, F2, identified as Alcaligenes faecalis MT332429, showed significant antagonistic activity against Candida albicans ATCC 10231 and Aspergillus niger clinical isolate. • This stable fungicidal extracellular metabolite was identified as octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate. • Optimization using central composite design resulted in 2.48-fold increase in production reaching 213.82 µg/ml.


Assuntos
Alcaligenes faecalis , Antifúngicos , Antifúngicos/farmacologia , Aspergillus niger , Candida albicans , Propionatos
5.
Infect Drug Resist ; 13: 3613-3626, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116681

RESUMO

PURPOSE: We aimed to optimize the factors affecting the production of the allylamine antifungal, terbinafine, by Lysinibacillus isolate MK212927, a natural producer of this broad-spectrum fungicidal compound. METHODS: We employed a central composite design to optimize the five most important variables influencing the production of terbinafine which were carbon source, nitrogen source, temperature, pH and agitation. RESULTS: The optimum conditions were found to be starch 5 g/L, ammonium chloride 5 g/L, temperature 32°C, agitation 150 rpm and pH 7. The actual response (inhibition zone diameter) was highly comparable to the value predicted by the model, indicating a valid model. Using the standard calibration curve of terbinafine, the optimized conditions resulted in an increase in the antifungal metabolite production (terbinafine) by about 1.6-fold (1814.662 µg/mL compared to 1165.550 µg/mL under standardized conditions). CONCLUSION: This is the first report, to the best of our knowledge, on optimized production of terbinafine by Lysinibacillus species. Hence, these findings may be useful as baseline data for scaling up the production of terbinafine from a natural microbial source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...